Amphiphilic polyanhydride nanoparticles stabilize Bacillus anthracis protective antigen.

نویسندگان

  • L K Petersen
  • Y Phanse
  • A E Ramer-Tait
  • M J Wannemuehler
  • B Narasimhan
چکیده

Advancements toward an improved vaccine against Bacillus anthracis, the causative agent of anthrax, have focused on formulations composed of the protective antigen (PA) adsorbed to aluminum hydroxide. However, due to the labile nature of PA, antigen stability is a primary concern for vaccine development. Thus, there is a need for a delivery system capable of preserving the immunogenicity of PA through all the steps of vaccine fabrication, storage, and administration. In this work, we demonstrate that biodegradable amphiphilic polyanhydride nanoparticles, which have previously been shown to provide controlled antigen delivery, antigen stability, immune modulation, and protection in a single dose against a pathogenic challenge, can stabilize and release functional PA. These nanoparticles demonstrated polymer hydrophobicity-dependent preservation of the biological function of PA upon encapsulation, storage (over extended times and elevated temperatures), and release. Specifically, fabrication of amphiphilic polyanhydride nanoparticles composed of 1,6-bis(p-carboxyphenoxy)hexane and 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane best preserved PA functionality. These studies demonstrate the versatility and superiority of amphiphilic nanoparticles as vaccine delivery vehicles suitable for long-term storage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antibody titers of PEG-PLA block copolymer nanosphere containing chimeric recombinant protein of protective antigen and lethal factor of Bacillus anthracis

Introduction: To date, many vaccines have been developed for anthrax but not yet an ideal vaccine. In this study, chimeric protein containing domain 1 lethal factor and domain 4 protective antigens of Bacillus anthracis in copolymer nanocapsules were used to solve the problems caused by existing vaccines and to increase the efficiency of the proposed vaccine. Materials and Methods: In this expe...

متن کامل

Construction of a Eukaryotic Plasmid Encoding Bacillus anthracis Protective Antigen, a Candidate for DNA Vaccine

Background: DNA immunization with plasmid DNA encoding bacterial, viral, parasitic and tumor antigens has been reported to trigger protective immunity. Objective: To evaluate the use of a DNA immunization strategy for protection against anthrax, a plasmid was constructed. Methods: The partialsequence of protective antigen of Bacillus anthracis, amino acids 175-764, as a potent immunogenic targe...

متن کامل

Combinatorial evaluation of in vivo distribution of polyanhydride particle-based platforms for vaccine delivery

Several challenges are associated with current vaccine strategies, including repeated immunizations, poor patient compliance, and limited approved routes for delivery, which may hinder induction of protective immunity. Thus, there is a need for new vaccine adjuvants capable of multi-route administration and prolonged antigen release at the site of administration by providing a depot within tiss...

متن کامل

In Silico Prediction of B-Cell and T-Cell Epitopes of Protective Antigen of Bacillus anthracis in Development of Vaccines Against Anthrax

Protective antigen (PA), a subunit of anthrax toxin from Bacillus anthracis, is known as a dominant component in subunit vaccines in protection against anthrax. In order to avoid the side effects of live attenuated and killed organisms, the use of linear neutralizing epitopes of PA is recommended in order to design recombinant vaccines. The present study is aimed at determining the dominant epi...

متن کامل

Salmonella enterica serovar typhimurium expressing a chromosomally integrated copy of the Bacillus anthracis protective antigen gene protects mice against an anthrax spore challenge.

Protective immunity against infection with Bacillus anthracis is almost entirely based on a response to the protective antigen (PA), the binding moiety for the two other toxin components. We cloned the PA gene into an auxotrophic mutant of Salmonella enterica serovar Typhimurium as a fusion with the signal sequence of the hemolysin (Hly) A gene of Escherichia coli to allow the export of PA via ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmaceutics

دوره 9 4  شماره 

صفحات  -

تاریخ انتشار 2012